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Replica-symmetry-breaking transition in finite-size simulations
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Finite-size effects in the mean-field Ising spin glass and the mean-field three-state Potts glass are investi-
gated by Monte Carlo simulations. In the thermodynamic limit, each model is known to exhibit a continuous
phase transition into the ordered state with a full and a one-step replica-symmetry breaking~RSB!, respec-
tively. In the Ising case, the Binder parameterg calculated for various finite sizes remains positive at any
temperature and crosses at the transition point, while in the Potts caseg develops a negative dip without
showing a crossing in theg.0 region. By contrast, non-self-averaging parameters always remain positive and
show a clear crossing at the transition temperature in both cases. Our finding suggests that care should be taken
in interpreting the numerical data of the Binder parameter, particularly when the system exhibits a one-step-
like RSB.

PACS number~s!: 05.50.1q, 75.50.Lk
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I. INTRODUCTION

The concept of replica-symmetry breaking~RSB! @1#
gives us new insight into the character of the ordered stat
complex systems such as spin glasses~SGs! @2# and real
structural glasses@3#. Systems exhibiting RSB can rough
be divided into two categories depending on their break
patterns: One is a full or hierarchical RSB and the other
one-step RSB. In both cases, there are many different e
librium states unrelated by the global symmetry of t
Hamiltonian, and an overlap between these states play
important role in describing the ordered state.

In the case of one-step RSB@1#, the overlapq takes
only two values in the thermodynamic limit, namely, eithe
self-overlap equal to the Edwards-Anderson order parame
q5qEA , or a non-self-overlap usually equal to zero,q50.
The overlap distribution functionP(q) consists of two dis-
tinct d-function peaks, one atq5qEA and the other atq50.
One-step RSB transitions could be either continuous or
order, either with or without a finite discontinuity inqEA at
the transition. Examples of the first-order one-step RSB tr
sition may be the mean-fieldp-spin glass withp.2, the
random energy model, and the mean-fieldp-state Potts
glass withp.4, while those of the continuous one-step RS
transition may be the mean-fieldp-state Potts glass with
2.8,p<4.

In the case of the full RSB, by contrast, possible valu
of the overlap are distributed continuously in a certa
range, and the states are organized in a hierarchical ma
The overlap distribution function has a continuous platea
q,qEA in addition to thed-function peak atq5qEA . A
well-known example of this category is the standard me
field Ising SG, namely, the Sherrington-Kirkpatrick~SK!
model. In some special cases, the admixture of the ab
two, where the overlap distribution function has a continuo
plateau together with thed-function peak atq50 ~and the
one atq5qEA), is also possible. An example of this may b
the mean-fieldp-state Potts glass with 2,p,2.8.

Recent interest in SG studies has been focused largel
the validity of applying the RSB idea established in so
PRE 621063-651X/2000/62~3!/3360~6!/$15.00
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mean-field models to more realistic short-range SG mod
In almost all such studies, the three-dimensional~3D! Ising
SGs model has been employed. Indeed, some resear
have claimed that the full or hierarchical RSB as observed
the SK model@4# is also realized in realistic 3D SGs@5#,
while other researchers have claimed, based on an altern
droplet picture@6#, that the ordered state of realistic 3D SG
is unique up to global symmetry of the Hamiltonian, witho
showing RSB of any kind@7,8#. Thus, intensive debate ha
continued between these two scenarios as to the true na
of the SG ordered state of 3D short-range systems.

Meanwhile, the one-step RSB has been discussed ma
with interest in its close connection to structural glass
rather than SG magnets@9,10#. Recently, however, one-ste
RSB features have been found unexpectedly by the pre
authors in the chiral-glass state of a 3D Heisenberg SGs@11#.
According to the chirality mechanism of experimental S
transitions based on the spin-chirality decoupling-recoupl
scenario@12#, the SG ordered state and the SG phase tra
tion of real Heisenberg-like SG magnets possessing weak
nonzero magnetic anisotropy are governed by the chira
ordering of the fully isotropic system which is ‘‘revealed
by the weak magnetic anisotropy,not by the spin ordering
which has been ‘‘separated’’ in the fully isotropic case fro
the chirality ordering. Then, the observation of Ref.@11#
means that the SG ordered state of most of real SG mag
should also exhibit such one-step RSB-like features. N
that such a picture of the SG ordered state contrasts with
standard pictures discussed so far, either the droplet pic
without RSB or the SK picture with full RSB.

Under such circumstances, further studies of the natur
the possible RSB in 3D short-range SG models are cle
required. Since we are usually forced to employ numeri
simulations to investigate 3D short-range models and si
numerical simulations are often hampered by severe fin
size effects, we feel it worthwhile to further clarify by nu
merical simulations the finite-size effects in somemean-field
modelswhich are exactly known to exhibit RSB transition
in the thermodynamic limit. In particular, the question as
how the one-step and full RSB transitions look like in finit
3360 ©2000 The American Physical Society
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PRE 62 3361DESCRIPTION OF THE REPLICA-SYMMETRY- . . .
size simulations is of both fundamental and practical inter
Such information would be of much help as a reference
interpreting the numerical data obtained for finit
dimensional short-range SG models.

In the present paper, we choose two mean-field SG m
els exactly known to exhibit acontinuous~second-order!
phase transition in the thermodynamic limit: One is the
model which shows full RSB, and the other is the mean-fi
three-state (p53) Potts-glass model which shows one-st
RSB. We calculate by Monte Carlo simulations seve
quantities which have widely been used in identifying t
phase transition, including the spin-glass order param
and the Binder parameter, together with quantities rece
introduced to represent the non-self-averaging characte
the ordered state. By carefully examining the size dep
dence of these quantities, a comparison is made betwee
two types of RSB. Our results have revealed that the Bin
parameter of the one-step RSB system shows a behavior
different from the standard behavior, giving warning abo
the interpretation of the numerical data for relevant sho
range systems.

II. MODELS

The mean-fieldp-state Potts-glass model is defined by t
Hamiltonian,

H52p(
i , j

N

Ji j dni ,nj
, ~1!

whereni denotes a Potts-spin variable at thei th site which
takesp distinct states, andN is the total number of Potts
spins. The exchange interactionJi j is an independent random
Gaussian variable with zero mean and varianceJ2/N. The
model with p52 is equivalent to the SK model. In th
present study, we focus our attention on the standard
model corresponding top52 and the three-state Potts-gla
model corresponding top53. Although the thermodynamic
properties of an infinite system have been rather well und
stood by the calculation based on a replica techni
@1,4,13,14#, its finite-size properties have been much less
derstood.

It is convenient to use an equivalent simplex spin rep
sentation where the Potts spinni is written in terms of a (p
21)-dimensional unit vectorSW i , which satisfiesSW i•SW j
5(pdninj

21)/(p21),

H52~p21!(
i , j

N

Ji j SW i•SW j . ~2!

In the particular case ofp52, SW i simply reduces to the one
component Ising variableSi561, and the Hamiltonian~2!
is equivalent to the standard SK Hamiltonian.

In terms of the simplex spinSi
m (1<m<p21), the pa-

rameterq may be defined by

q5A(
m,n

p21

~qmn!2, ~3!
t.
n
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whereqmn denotes an overlap tensor between two replica
and 2:

qmn5
1

N (
i 51

N

Si ,1
m Si ,2

n . ~4!

The Binder parameter is then given by

g~T,N!5
~p21!2

2 S 11
2

~p21!2
2

@^q4&#

@^q2&#2D , ~5!

where ^•••& denotes the thermal average and@•••# denotes
the average over the quenched randomness$Ji j %. The Binder
parameter is normalized so as to vanish above the trans
temperatureTg in the thermodynamic limit. Recall that atT
.Tg each componentqmn should behave as an independe
Gaussian variable. BelowTg , g is normalized to give unity
in the thermodynamic limit for the nondegenerate orde
state whereP(q) has only trivial peak atq5qEA . Of course,
this is not the case for SG models showing RSB includ
the present mean-field SG models, for whichg takes non-
trivial values different from unity even in the thermodynam
limit. Hence, at least in the case where a continuous ph
transition occurs into the trivial ordered state,g for various
finite sizes is expected to cross atT5Tg . Indeed, this aspec
has widely been used for locating the transition tempera
from the numerical data for finite systems.

III. MONTE CARLO RESULTS

We perform Monte Carlo~MC! simulations based on a
version of the extended ensemble method, called the
change method@15#. As in other SG models, an extreme
slow relaxation becomes a serious problem of MC simu
tions in the present mean-field SG models. Such difficu
could partly be overcome by using the exchange meth
which has turned out to be quite efficient in thermalizi
various hardly relaxing systems. The method enables u
study larger sizes and/or lower temperatures than those
tained previously. Our MC simulations have been perform
up toN5512 atT/J50.25 for the SK model andN5256 at
T/J50.4 for the mean-fieldp53 Potts-glass model, wher
Tg /J51 in both models. Sample averages are taken o
200–1792 independent bond realizations depending on
sizeN. We note that the minimum temperature studied h
are considerably lower than the previous ones: e.g.,N
5512 atT/J50.75 @16# for the SK model andN5120 at
T/J50.98 for the mean-fieldp53 Potts-glass model@17#.

The temperature and size dependence of the calcul
Binder parameterg is shown in Figs. 1 and 2 for the SK an
thep53 Potts-glass models, respectively. As is evident fr
these figures, the Binder parameters of the two mean-fi
models show considerably different behaviors from ea
other.

In the SK model, as shown in Fig. 1, a clear crossing og
is observed atT5Tg , which looks similar to the ones seen
the standard continuous transitions. In fact, the behaviorg
found here also resembles the ones observed in the s
range Ising SG models in 3D@18,19# and in 4D@20#, though
the crossing tendency is less pronounced in 3D than in
As mentioned,g of the SK model takes a nontrivial valu
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below Tg even in the thermodynamic limit due to its RSB
We show in Fig. 1 the behavior ofg(T,`) evaluated in the
replica formalism by numerically solving the Parisi equati
@Ref. 1~a!#. Note that, as the temperature approachesTg from
below, the limiting valueg(Tg

2 ,`) goes to unity as in the
case of ordinary continuous phase transitions. Hence,
increasingN, g(Tg

2 ,N) just below Tg is expected to ap-
proach unityfrom belowwhile g(Tg

1 ,N) just aboveTg ap-
proaches zerofrom above, which entails a crossing ofg at
T5Tg . With lowering the temperature,g(T,`) first de-
creases, reaching a minimum aroundT/J50.5, and increase
again tending to unity atT50. Here note that, for any mode
with a nondegenerate ground state,P(q) becomes trivial at
T50 irrespective of the occurrence of RSB, andg tends to
unity. As can be seen in Fig. 1, the present MC results
finite N gradually approach theg(T,`) curve of an infinite
system.

In the mean-fieldp53 Potts glass, as shown in Fig. 2, n
crossing ofg is observed atT5Tg @21#, at least of the type as
observed in the SK model. Instead, unlike the case of the
model, a shallownegativedip develops aboveTg for largerN
which becomes deeper as the system gets larger. Altho

FIG. 1. Temperature and size dependence of the Binder pa
eter of the SK model. The bulk transition temperature is locate
T/J51. The dashed line represents the RSB solution derived
solving the Parisi equation.

FIG. 2. Temperature and size dependence of the Binder pa
eter of the mean-fieldp53 Potts glass. The bulk transition temper
ture is located atT/J51.
th

r

K

gh

the existence of a negative dip was not reported in previ
numerical works@21#, we note that a negative dip appea
only for largerN which accounts for the absence of a neg
tive dip in the previous data. Perhaps, on looking at Fig.
one would hardly imagine that there occurs a continuo
phase transition atT/J51: Nevertheless, the occurrence of
continuous transition atT/J51 is an exactly establishe
property of the model. We also note that, while the appe
ance of a growing negative dip in the Binder parameter
often related to the occurrence of a first-order transition@22#,
this is not always the case: Here, the transition is establis
to be continuous.

It might be instructive to examine here the behavior og
in the thermodynamic limit. As the temperature approac
Tg from below,g(Tg

2 ,`) tends to anegativevalue,21 in
the present case. Such a negative value ofg(Tg

2 ,`) is in
sharp contrast to the system showing full RSB whe
g(Tg

2 ,`)51. Indeed, this negativity is closely related to th
occurrence of one-step RSB in the model@23#.

Then, one expects that the negative dip ofg(T,N) ob-
served in Fig. 2 further deepens with increasingN, and even-
tually approaches21 from aboveat T5Tg

2 , in sharp con-
trast to the SK case whereg(Tg

2 ,N) approaches 1from
below. Therefore, the crossing ofg in the g.0 region as
observed in the SK model hardly occurs in thep53 Potts-
glass model. Rather, if one considers the fact thatg(T,N)
above Tg is negative for moderately largeN approaching
zerofrom below, the crossing ofg is expected to occurin the
g,0 region, not in theg.0 region as in the case of the S
model. The data of Fig. 2 are certainly consistent with suc
behavior. Anyway, our present result of the mean-fieldp
53 Potts glass has revealed that the data of the Binder
rameter have to be interpreted with special care particul
when the ordered state has one-step RSB features.

Next, we study the so-called Guerra parameter which w
originally introduced to detect the RSB transition@24#:

G~T,N!5
@^q2&2#2@^q2&#2

@^q4&#2@^q2&#2
. ~6!

Since the numerator represents a sample-to-sample fluc
tion of the overlap, a nonvanishing ofG means a lack of
self-averaging as long as the denominator remains nonz
In the mean-field SG models studied here, their RSB ind
gives rise to the lack of self-averaging, i.e., the occurrence
a nontrivial probability distribution of the overlap ove
quenched disorder. It has been rigorously proved, with
using the replica trick, that in the SG phase of the SK mo
the G parameter in the thermodynamic limit is equal to 1
independent of the temperature@25#. Meanwhile, it has been
pointed out in Ref.@26# that, even whenP(q) is trivial and
the ordered state is self-averaging, theG parameter can still
take a nonzero value due to the possible vanishing of
denominator, leading to a crossing atTg @26#. Hence, the
crossing ofG does not necessarily mean a lack of se
averaging, although it can still be used as an indicator o
phase transition. As an indicator of the non-self-averagen
in the ordered state, one may use theA parameter defined by
@27#

m-
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A~T,N!5
@^q2&2#2@^q2&#2

@^q2&#2
. ~7!

We calculate these two parametersG andA, both for the
SK and the mean-fieldp53 Potts-glass models. The tem
perature and size dependence of theG andA parameters of
the SK model is shown in Figs. 3 and 4, respectively. A
though the error bars are still large, bothG and A show a
clear crossing atTg , remaining positive at any temperatur
As expected, with increasingN, theG parameter approache
1/3 independent ofT belowTg . By contrast, theA parameter
for various sizes merge into a curve belowTg , which clearly
stays nonzero indicating the non-self-averageness of the
dered state. Here it should be noticed that, just at the tra
tion point, non-self-averageness is expected to occur in
random system, even including the ones without show
RSB in the ordered state@28,29#. Hence, in the type of ran
dom systems which do not show RSB in the ordered st
A(T,`) stays nonzero only just atT5Tg and vanishes on
both sides ofTg . By contrast, in the present SK mode
A(T,`) should stay finite even belowTg due to its RSB,
which explains the observed merging behavior seen in Fi

FIG. 3. Temperature and size dependence of theG parameter,
defined by Eq.~6!, of the SK model. The bulk transition temper
ture is located atT/J51. The dashed horizontal line represents t
line G51/3.

FIG. 4. Temperature and size dependence of theA parameter,
defined by Eq.~7!, of the SK model. The bulk transition temper
ture is located atT/J51.
-

or-
si-
ny
g

e,

4

at T,Tg . As can be seen from Fig. 4, on further lowerin
the temperature towardT50, A(T,N) tends to vanish in
contrast to the behavior ofG(T,N). This aspect is consisten
with the fact that atT50 the overlap distribution become
trivial and the self-averageness is recovered irrespectiv
the occurrence of RSB.

The G andA of the mean-fieldp53 Potts glass are pre
sented in Figs. 5 and 6, respectively. Unlike the case of
Binder parameterg shown in Fig. 2, theG andA parameters
remain positive at anyT and show a clear crossing atT
5Tg : They behave more like the Binder parameter of st
dard systems, e.g., like the one shown in Fig. 1. In fact,
behaviors of theG andA parameters shown in Figs. 5 and
are similar to those of the SK model shown in Figs. 3 and
suggesting thatG and A are less sensitive to the kind o
breaking pattern of replica symmetry. Hence, one could
theG andA parameters to identify the SG transition based
the standard crossing method even for systems showin
one-step RSB.

Once the transition temperature is established, the n
task would be to determine critical exponents. Here we w
to examine a finite-size scaling hypothesis concerning
SG order parameter for the present mean-field models

FIG. 5. Temperature and size dependence ofG parameter, de-
fined by Eq.~6!, of the mean-fieldp53 Potts glass. The bulk tran
sition temperature is located atT/J51.

FIG. 6. Temperature and size dependence ofA parameter, de-
fined by Eq.~7!, of the mean-fieldp53 Potts glass. The bulk tran
sition temperature is located atT/J51.
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similar analysis has widely been used for extracting the c
cal exponents from the numerical data. According to R
@30#, finite-size scaling of the mean-field models can be
rived by assuming that the ‘‘coherence number’’ behaves
jdu where du is the upper critical dimension of the corre
sponding short-range model, while the ‘‘coherence lengthj
diverges atT5Tg with the correlation-length exponent at th
upper critical dimensionnMF , j;uT2Tgu2nMF. Then, the
squared order parameter can be written as

@^q2&#;uT2Tgu2bMFf ~NuT2TgudunMF!

;N22bMF /dunMFf 8~NuT2TgudunMF!, ~8!

where bMF51 is the mean-field order-parameter expon
whereasf and f 8 are the scaling functions. Noting the fa
that the upper critical dimension of the SG models isdu
56 and the correlation-length exponent atd5du56 is equal
to nMF51/2, it follows that

@^q2&#;N22/3f 9~ uT2TguN1/3!. ~9!

The resulting finite-size scaling plots are shown in Figs
and 8 for the SK and thep53 Potts-glass models, respe
tively. In both models, the scaling of the form~9! turns out to
work fairly well both belowandabove Tg as far as the tem

FIG. 7. Finite-size scaling plot of the squared order paramete
the SK model with the scaling form, Eq.~9!, with Tg /J51.

FIG. 8. Finite-size scaling plot of the squared order paramete
the p53 mean-field Potts glass with the scaling form, Eq.~9!, with
Tg /J51.
i-
f.
-
s

t

7

perature is sufficiently close toTg . We note that a similar
finite-size-scaling analysis has already been reported for
SK model just atTg @31# and for thep53 Potts-glass mode
aboveTg @17#. In particular, the scaling turns out to be re
sonably good even for thep53 Potts glass where the Binde
parameter does not exhibit a clear crossing in the rang
sizes studied. This implies that the standard finite-size s
ing analysis of the order parameter could still be useful e
in RSB systems including one-step RSB systems.

IV. DISCUSSION AND REMARKS

In this section, with our present results for the mean-fi
models in mind, we wish to comment on the possible RSB
someshort-rangeSG models.

As mentioned, one-step RSB-like features were rece
observed in the chiral-glass state of the 3D short-ra
Heisenberg SG@11#. There, the Binder parameter for th
chirality, the order parameter of the chiral-glass transiti
did not cross in theg.0 region and developed a negativ
dip which deepened with the system size. Instead, a cros
of g was observed in theg,0 region close to the negativ
dip ~see Fig. 1 of Ref.@11#!. Meanwhile, theG parameter
always remained positive and showed a clear crossingT
5Tg ~see Fig. 3 of Ref.@11#!. All these features are simila
to the ones observed here in the mean-fieldp53 Potts glass,
suggesting that the chiral-glass state of the 3D Heisenb
SG has a one-step RSB-like character@32#.

Another obvious interest is the nature of the possi
phase transition of the short-range three-state (p53) Potts-
glass model in 3D. It is widely believed that there is n
finite-temperature phase transition in 3Dp53 Potts glass
which was investigated by MC simulations@33–35# and
other numerical methods@36#. In particular, the MC results
of Refs.@33,35# revealed that the Binder parameter decrea
monotonically with system size without showing a crossin
which was taken as evidence of the absence of a fin
temperature transition. However, the behavior ofg observed
in Refs.@33,35# was not dissimilar to the one observed he
in the mean-fieldp53 Potts glass, and we feel that the po
sibility of the occurrence of a one-step RSB-like transition
finite Tg still cannot be ruled out.

Recently, short-rangep-spin glass models whose mea
field versions have been known to show one-step RSB w
studied by MC simulations@37,38#. For example, according
to the calculation of Ref.@38# for the 4D three-spin model
the Binder parameter did not exhibit a crossing of the st
dard type, while theG and A parameters showed a clea
crossing atT5Tg.0, strongly suggesting the occurrence
a finite-temperature transition. Thus, from our present stu
the possible occurrence of a one-step RSB transition aT
5Tg.0 is suspected. Meanwhile, closer inspection reve
that a negative dip observed ing becomes shallower with
increasing system size@38#, in contrast to the case of th
mean-field p53 Potts glass studied here. Further stud
seem to be required to clarify the nature of the RSB in
short-rangep-spin glass.

In conclusion, we have investigated by MC simulatio
the finite-size effects of the two mean-field SG mod
whose replica-symmetry-breaking properties in the therm
dynamic limit are well established. In the mean-field Isi
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spin glass~the SK model!, the Binder parameterg of various
sizes always remains positive and crosses atT5Tg , while in
the mean-field three-state Potts glass, it develops a neg
dip which deepens as the system size increases, witho
crossing in theg.0 region as observed in the SK mode
Instead, a crossing ofg occurs in theg,0 region near the
negative dip. Such a difference in the behaviors ofg reflects
the different types of associated RSB of the two models,
full versus one-step RSB. By contrast, the Guerra param
G and the non-self-averaging parameterA always remain
positive and show a crossing of the standard type atT5Tg
for both the SK andp53 Potts-glass models. We have al
discussed the implications of the present results to the
,
,

ys

et
ive
t a

.,
er

s-

sible interpretation of the numerical results for some sho
range SG models.
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