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Replica-symmetry-breaking transition in finite-size simulations
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Finite-size effects in the mean-field Ising spin glass and the mean-field three-state Potts glass are investi-
gated by Monte Carlo simulations. In the thermodynamic limit, each model is known to exhibit a continuous
phase transition into the ordered state with a full and a one-step replica-symmetry bré@RB)g respec-
tively. In the Ising case, the Binder parametgcalculated for various finite sizes remains positive at any
temperature and crosses at the transition point, while in the Pottsgcedsgelops a negative dip without
showing a crossing in thg>0 region. By contrast, non-self-averaging parameters always remain positive and
show a clear crossing at the transition temperature in both cases. Our finding suggests that care should be taken
in interpreting the numerical data of the Binder parameter, particularly when the system exhibits a one-step-
like RSB.

PACS numbd(s): 05.50:+q, 75.50.Lk

[. INTRODUCTION mean-field models to more realistic short-range SG models.
In almost all such studies, the three-dimensiai@) Ising
The concept of replica-symmetry breakinl®SB) [1] SGs model has been employed. Indeed, some researchers
gives us new insight into the character of the ordered state dfave claimed that the full or hierarchical RSB as observed in
complex systems such as spin glas$8&9 [2] and real the SK model[4] is also realized in realistic 3D SG$],
structural glassef3]. Systems exhibiting RSB can roughly while other researchers have claimed, based on an alternative
be divided into two categories depending on their breakingjroplet picture[6], that the ordered state of realistic 3D SGs
patterns: One is a full or hierarchical RSB and the other is 3s unique up to global symmetry of the Hamiltonian, without
one-step RSB. In both cases, there are many different equshowing RSB of any kind7,8]. Thus, intensive debate has
librium states unrelated by the global symmetry of thecontinued between these two scenarios as to the true nature
Hamiltonian, and an overlap between these states plays & the SG ordered state of 3D short-range systems.
important role in describing the ordered state. Meanwhile, the one-step RSB has been discussed mainly
In the case of one-step RSH], the overlapq takes with interest in its close connection to structural glasses
only two values in the thermodynamic limit, namely, either arather than SG magnef8,10]. Recently, however, one-step
self-overlap equal to the Edwards-Anderson order parameteRSB features have been found unexpectedly by the present
d=dea, Or a non-self-overlap usually equal to zetps 0. authors in the chiral-glass state of a 3D Heisenberg[3@s
The overlap distribution functio®(q) consists of two dis-  According to the chirality mechanism of experimental SG
tinct 5-function peaks, one @f=(qes and the other aj=0.  transitions based on the spin-chirality decoupling-recoupling
One-step RSB transitions could be either continuous or firs§cenarid12], the SG ordered state and the SG phase transi-
order, either with or without a finite discontinuity o at  tion of real Heisenberg-like SG magnets possessing weak but
the transition. Examples of the first-order one-step RSB trannonzero magnetic anisotropy are governed by the chirality
sition may be the mean-fielg-spin glass withp>2, the  ordering of the fully isotropic system which is “revealed”
random energy model, and the mean-figlestate Potts by the weak magnetic anisotropgot by the spin ordering
glass withp>4, while those of the continuous one-step RSBwhich has been “separated” in the fully isotropic case from
transition may be the mean-field-state Potts glass with the chirality ordering. Then, the observation of REf1]
2.8<p=4. means that the SG ordered state of most of real SG magnets
In the case of the full RSB, by contrast, possible valueshould also exhibit such one-step RSB-like features. Note
of the overlap are distributed continuously in a certainthat such a picture of the SG ordered state contrasts with the
range, and the states are organized in a hierarchical mannetandard pictures discussed so far, either the droplet picture
The overlap distribution function has a continuous plateau alvithout RSB or the SK picture with full RSB.
g<(Qga in addition to thes-function peak atq=0ggs. A Under such circumstances, further studies of the nature of
well-known example of this category is the standard meanthe possible RSB in 3D short-range SG models are clearly
field Ising SG, namely, the Sherrington-Kirkpatri¢K)  required. Since we are usually forced to employ numerical
model. In some special cases, the admixture of the abovsimulations to investigate 3D short-range models and since
two, where the overlap distribution function has a continuousiumerical simulations are often hampered by severe finite-
plateau together with thé-function peak afg=0 (and the size effects, we feel it worthwhile to further clarify by nu-
one atq=(qga), is also possible. An example of this may be merical simulations the finite-size effects in somean-field
the mean-fieldp-state Potts glass with<2p<2.8. modelswhich are exactly known to exhibit RSB transitions
Recent interest in SG studies has been focused largely dan the thermodynamic limit. In particular, the question as to
the validity of applying the RSB idea established in somehow the one-step and full RSB transitions look like in finite-
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size simulations is of both fundamental and practical interestwhereg”” denotes an overlap tensor between two replicas 1
Such information would be of much help as a reference irand 2:
interpreting the numerical data obtained for finite- \
dimensional short-range SG models. , 1 o
In the present paper, we choose two mean-field SG mod- q* N izl SaSi2- 4)
els exactly known to exhibit a@ontinuous(second-order
phase transition in the thermodynamic limit: One is the SKThe Binder parameter is then given by
model which shows full RSB, and the other is the mean-field

three-state f=3) Potts-glass model which shows one-step (p—1)2 2 [{g%]
RSB. We calculate by Monte Carlo simulations several 9(T.N)=— 7 ah ) (5
guantities which have widely been used in identifying the (P17 [{a%]

phase transition, including the spin-glass order parametgf,,

i : o ere(---) denotes the thermal average gnd-] denotes
and the Binder parameter, together with quantities recentl(}éF () ge and-]

e average over the quenched randomiigsk. The Binder
arameter is normalized so as to vanish above the transition
'emperatureTg in the thermodynamic limit. Recall that @t

¢ €ach componerq,,, should behave as an independent
ussian variable. Belowy, g is normalized to give unity

introduced to represent the non-self-averaging character
the ordered state. By carefully examining the size depe
dence of these quantities, a comparison is made between t
two types of RSB. Our results have revealed that the Bindeéa

parameter of the one-step RSB system shows a behavior Vel the thermodynamic limit for the nondegenerate ordered

different from the standard behavior, giving warning abOUtstate wheré®(q) has only trivial peak aj=qes . OF course,

the interpretation of the numerical data for relevant short-this is not the case for SG models showing RSB including
range systems.

the present mean-field SG models, for whighakes non-

trivial values different from unity even in the thermodynamic
Il. MODELS limit. Hence, at least in the case where a continuous phase
transition occurs into the trivial ordered statgfor various

The mean-fielg-state Potts-glass model is defined by theg o'/ i expected to crossTat T. Indeed, this aspect

Hamiltonian, has widely been used for locating the transition temperature
N from the numerical data for finite systems.
H=—p>, JijSn n (1)
pi<j ey Ill. MONTE CARLO RESULTS

We perform Monte CarldMC) simulations based on a
version of the extended ensemble method, called the ex-
change method15]. As in other SG models, an extremely
slow relaxation becomes a serious problem of MC simula-
tions in the present mean-field SG models. Such difficulty

ould partly be overcome by using the exchange method,

wheren; denotes a Potts-spin variable at fitle site which
takesp distinct states, andN is the total number of Potts
spins. The exchange interactidy is an independent random
Gaussian variable with zero mean and variad&N. The
model with p=2 is equivalent to the SK model. In the

present study, we focus our attention on the standard S hich has turned out to be quite efficient in thermalizing

moge: correspong!ng Epig E’X'I?hthe :]htrﬁe—tsk;[ate F)é)tts"gl"."ssvarious hardly relaxing systems. The method enables us to
model corresponding tp=s. ough the thermodynamic study larger sizes and/or lower temperatures than those at-

properties of an infinite system have been rather well undert'ained previously. Our MC simulations have been performed
stood by the calculation based on a replica techniqu%p toN=512 atT/J=0.25 for the SK model antl = 256 at
[1,4,13,14, its finite-size properties have been much less UN=3-0 4 for the mean.—fielq)=3 Potts-glass model, where
derstood. ; ’

) . . . : T4/J=1 in both models. Sample averages are taken over
It is convenient to use an equivalent simplex spin repre-

sentation where the Potts spinis written in terms of a 200-1792 independent bond realizations depending on the
v sizeN. We note that the minimum temperature studied here

—1)-dimensional unit vectorS;, which satisfiesSi-S;  are considerably lower than the previous ones: eNy.,
=(Pdnn,—1)/(p—1), =512 atT/J=0.75[16] for the SK model andN=120 at
T/J=0.98 for the mean-fielgp=3 Potts-glass mod¢lL7].
N o The temperature and size dependence of the calculated
H=—(p— 1)2 JiiS-§;. (2)  Binder parameteg is shown in Figs. 1 and 2 for the SK and
= the p=3 Potts-glass models, respectively. As is evident from
. these figures, the Binder parameters of the two mean-field
In the particular case gfi=2, S; simply reduces to the one- models show considerably different behaviors from each
component Ising variabl§ =+ 1, and the Hamiltoniai2)  other.

is equivalent to the standard SK Hamiltonian. In the SK model, as shown in Fig. 1, a clear crossing of
In terms of the simplex spi§* (1su<p—1), the pa- is observed al =T, which looks similar to the ones seen in
rameterq may be defined by the standard continuous transitions. In fact, the behavigr of
found here also resembles the ones observed in the short-
1 range Ising SG models in 3[18,19 and in 4D[20], though
g=\ / D (g"")2, 3) the crossing tendency is less pronounced in 3D than in 4D.
v As mentionedg of the SK model takes a nontrivial value
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1 = - - — - - the existence of a negative dip was not reported in previous
09 T ~ numerical workg21], we note that a negative dip appears
08 | only for largerN which accounts for the absence of a nega-
07 b tive dip in the previous data. Perhaps, on looking at Fig. 2,

) one would hardly imagine that there occurs a continuous
06 phase transition ak/J=1: Nevertheless, the occurrence of a

% 05 continuous transition af/J=1 is an exactly established
04 | property of the model. We also note that, while the appear-
03 ance of a growing negative dip in the Binder parameter is
oz | often related to the occurrence of a first-order transitz#],

) this is not always the case: Here, the transition is established
01r to be continuous.

0 : : It might be instructive to examine here the behaviogof
0 02 04 06 08 1 12 14 in the thermodynamic limit. As the temperature approaches
Tg4 from below,g(T4 ,) tends to anegativevalue, —1 in
FIG. 1. Temperature and size dependence of the Binder paramhe present case. Such a negative valuej.](d‘fg ,) is in
eter of the SK model. The bulk transition temperature is located akharp contrast to the system showing full RSB where
T/.]_= 1. The da_ls_hed Iin_e represents the RSB solution derived b)é(-rg— ,=)=1. Indeed, this negativity is closely related to the
solving the Parisi equation. occurrence of one-step RSB in the mof23).

. o ) Then, one expects that the negative dipgdf,N) ob-
below T4 even in the thermodynamic limit due to its RSB. gepyed in Fig. 2 further deepens with increasignd even-
Wel_shofw in 'I:'ig. 1bthe beh?"i?lr qy(;l".oo) ;}Va:;‘at,eq in th? tually approaches-1 from aboveat T=T , in sharp con-
replica formalism by numerically solving the Parisi equation -

[Ref. A(@)]. Note that, as the temperature approachgsom g;s(: V\;[OT:\he?eg:e C?ﬁg g:gg;igéTg .N) approaches 1rom

o - . . , g a in the g>0 region as
below, the limiting valueg(T, ) goes to unity as in the ,psered in the SK model hardly occurs in the 3 Potts-
case of ordinary continuous phase transitions. Hence, WitBIass model. Rather, if one considers the fact t,N)
increasingN, g(Tg ,N) just belo"‘iTg is expected to ap- above T, is negative for moderately larghl approaching
proach unityfrom belowwhile g(T ,N) just aboveTq ap-  zerofrom below the crossing of is expected to occuin the
proaches zerdrom above which entails a crossing daf at g<0 region, not in theg>0 region as in the case of the SK
T=Tgy. With lowering the temperatureg(T,=) first de-  model. The data of Fig. 2 are certainly consistent with such a
creases, reaching a minimum aroud=0.5, and increases pehavior. Anyway, our present result of the mean-fipld
again tending to unity af=0. Here note that, for any model -3 potts glass has revealed that the data of the Binder pa-
with a nondegenerate ground sta{g) becomes trivial at rameter have to be interpreted with special care particularly
T=0 irrespective of the occurrence of RSB, apdéiends to  when the ordered state has one-step RSB features.
unity. As can be seen in Fig. 1, the present MC results for Next, we study the so-called Guerra parameter which was

finite N gradually approach thg(T,) curve of an infinite  originally introduced to detect the RSB transitif]:
system.

In the mean-fielgp=3 Potts glass, as shown in Fig. 2, no
crossing ofg is observed at =T, [21], at least of the type as _ [(a®)?]- (9?1
observed in the SK model. Instead, unlike the case of the SK (T.N)= [(q4)]—[(q2>]2 ' 6)
model, a shallowmegativedip develops aboveé, for largerN
which becomes deeper as the system gets larger. Although
Since the numerator represents a sample-to-sample fluctua-

0.5 tion of the overlap, a nonvanishing @ means a lack of

"N=32 —+—

N=64 —3¢— self-averaging as long as the denominator remains nonzero.
04 | N=128 —%— - In the mean-field SG models studied here, their RSB indeed
N=256 —8—

h gives rise to the lack of self-averaging, i.e., the occurrence of

03} a nontrivial probability distribution of the overlap over
quenched disorder. It has been rigorously proved, without
S0 02 using the replica trick, that in the SG phase of the SK model
the G parameter in the thermodynamic limit is equal to 1/3,
01} independent of the temperati25]. Meanwhile, it has been
pointed out in Ref[26] that, even wherP(q) is trivial and
0 the ordered state is self-averaging, thgparameter can still
take a nonzero value due to the possible vanishing of the
0.1 - s : : : denominator, leading to a crossing B [26]. Hence, the
0.6 0.8 T}J 1.2 14 crossing of G does not necessarily mean a lack of self-

averaging, although it can still be used as an indicator of a

FIG. 2. Temperature and size dependence of the Binder paranphase transition. As an indicator of the non-self-averageness
eter of the mean-field=3 Potts glass. The bulk transition tempera- in the ordered state, one may use thparameter defined by
ture is located af/J=1. [27]
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FIG. 3. Temperature and size dependence ofGhgarameter, FIG. 5. Temperature and size dependenc&gdarameter, de-
defined by Eq(6), of the SK model. The bulk transition tempera- fined by Eq.(6), of the mean-fielp=3 Potts glass. The bulk tran-
ture is located al/J=1. The dashed horizontal line represents thesition temperature is located atJ=1.
line G=1/3.

at T<Tg. As can be seen from Fig. 4, on further lowering

the temperature toward=0, A(T,N) tends to vanish in

[{(g?)]2 contrast to the behavior @(T,N). This aspect is consistent
with the fact that aff=0 the overlap distribution becomes

We calculate these two paramet@sandA, both for the ~ trivial and the self-averageness is recovered irrespective of

SK and the mean-fielp=3 Potts-glass models. The tem- the occurrence of RSB. .

perature and size dependence of Giand A parameters of ~ The G andA of the mean-fieldo=3 Potts glass are pre-
the SK model is shown in Figs. 3 and 4, respectively. A|_sgnted in Figs. 5 and 6, r_esp_ectlvely. Unlike the case of the
though the error bars are still large, bahand A show a  Binder parameteg shown in Fig. 2, the5 andA parameters
clear crossing al;, remaining positive at any temperature. fémain_positive at anyr and show a clear crossing at

As expected, with increasinly, the G parameter approaches = T¢: They behave more like the Binder parameter of stan-
1/3 independent of belowT,. By contrast, theA parameter dard systems, e.g., like the one shown in Fig. 1. In fact, the
for various sizes merge into a curve beldy, which clearly ~Pehaviors of thes andA parameters shown in Figs. 5 and 6
stays nonzero indicating the non-self-averageness of the of'® Similar to those of the SK model shown in Figs. 3 and 4,
dered state. Here it should be noticed that, just at the transfUggesting thaG and A are less sensitive to the kind of
tion point, non-self-averageness is expected to occur in angeak'”g pattern of replica symmetry. Hence, one could use

2\27 _ 2\12
A(T,N):Kq )1-Ka91”™ @

random system, even including the ones without showind"€G andA parameters to identify the SG transition based on
RSB in the ordered staf@8,29. Hence, in the type of ran- (e standard crossing method even for systems showing a
dom systems which do not show RSB in the ordered state?n€-Step RSB.

A(T,=) stays nonzero only just &=T, and vanishes on Once the transition temperature is established, the next
both sides ofT,. By contrast, in the gpresent SK model task would be to determine critical exponents. Here we wish

A(T,¢) should stay finite even beloW, due to its RSB to examine a finite-size scaling hypothesis concerning the
which explains the observed merging behavior seen in Fig. #C order parameter for the present mean-field models. A

. . . . . 0.14 : . ; ; .
0.25 i Yy N=32 —+—
B d - N=64 -
0.12 -, - N=128 +—K-—1 .
02y N=256 -
01 F % ]
015 r 0.08 [
< <
o1 b 0.06
0.04
0.05 |
0.02 |
0 L L L n 0 L L 1 1
0 02 04 06 08 12 14 0.6 08 1 12 14
14 Ty

FIG. 4. Temperature and size dependence ofAhgarameter,

ture is located af/J=1.

FIG. 6. Temperature and size dependencé\ gfarameter, de-
defined by Eq(7), of the SK model. The bulk transition tempera- fined by Eq.(7), of the mean-fielgp=3 Potts glass. The bulk tran-
sition temperature is located atJ=1.
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18 N=32 —— perature is sufficiently close tdy. We note that a similar
16 |5 N=64 s>t finite-size-scaling analysis has already been reported for the
ul NS SK model just afT; [31] and for thep=3 Potts-glass model
) N=512 -~ aboveT, [17]. In particular, the scaling turns out to be rea-
. 12r 1 sonably good even for the= 3 Potts glass where the Binder
L0t X’E parameter does not exhibit a clear crossing in the range of
T sl X sizes studied. This implies that the standard finite-size scal-
= = ing analysis of the order parameter could still be useful even
61 +,% 1 in RSB systems including one-step RSB systems.
4t i 1
2r @J"Bﬂ-. _ IV. DISCUSSION AND REMARKS
0 . . . NEtw oy xm.+ ) ) ) .
4 3 2 1 3 4 In this section, with our present results for the mean-field

0 1
I(T-TiIN"? models in mind, we wish to comment on the possible RSB in
L . someshort-rangeSG models.

FIG. 7. Finite-size scaling plot of the squared order parameter of As mentioned, one-step RSB-like features were recently
the SK model with the scaling form, EG), with To/J=1. observed in the chiral-glass state of the 3D short-range

similar analysis has widely been used for extracting the Cmi_Helsenberg SG11]. There, the Binder parameter for the

. . chirality, the order parameter of the chiral-glass transition,
cal exponents from the numerical data. According to Ref y P 9

[30], finite-size scaling of the mean-field models can be de-dld not cross in theg>0 region and developed a negative

; . o o dip which deepened with the system size. Instead, a crossing
”Xed by assuming that the (_:(_)herence nl,!mber behaves azy g was observed in thg<<0 region close to the negative
& Wheredu Is the upper C““C‘.i' dimension of the corre- dip (see Fig. 1 of Ref[11]). Meanwhile, theG parameter
3%%?3::3;{????%? t?gi(e;lr,rggltli(e)rﬁhlin;?hhgiir:)%ee:qetna%?he always remained positive and showed a clear crossing at

~ g } = i imi
upper critical dimensionvye., §~|T—Tg|*”MF. Then, the T, (see Fig. 3 of Ref[11]). All these features are similar

sauared order parameter can be written as to the ones observed here in the mean-fiegtd3 Potts glass,
q P suggesting that the chiral-glass state of the 3D Heisenberg

SG has a one-step RSB-like charadt@2].
Another obvious interest is the nature of the possible

(8) phase transition of the short-range three-state §) Potts-
) ) glass model in 3D. It is widely believed that there is no
where By=1 is the mean-field order-parameter exponentinitetemperature phase transition in 3B=3 Potts glass
whereasf and f’ are the scaling functions. Noting the fact \yhich was investigated by MC simulatioj83—-35 and
that the upper critical dimension of the SG modelsdis  other numerical methodi6]. In particular, the MC results
=6 and the correlation-length exponentiatd,=6 is equal  of Refs.[33,35 revealed that the Binder parameter decreased
to vye=1/2, it follows that monotonically with system size without showing a crossing,
) which was taken as evidence of the absence of a finite-

temperature transition. However, the behaviogafbserved
The resulting finite-size scaling plots are shown in Figs. 70 Refs.[33,35 was not dissimilar to the one observed here
and 8 for the SK and thp=3 Potts-glass models, respec- IN the mean-fielp=3 Potts glass, and we feel that the pos-
tively. In both models, the scaling of the fori®) turns out to S.Ib.l|lty of the occurrence of a one-step RSB-like transition at
work fairly well both belowandabove T, as far as the tem- finité Ty still cannot be ruled out.

L)1~ T Ty (T T
~ N~ 2BvF/dyrvrf "(N|T— Tg|duVMF),

[(q2)]~ N2 "(|T=TgIN%S).

[{gINY?

S = N W h WL NN 0O
T T T T T T T T

*

N=32 —+—

N=64 s>t |

@
P+ xom +

4 3

-2

-1 0 1 3
(T-Tp)/JINY?

Recently, short-range-spin glass models whose mean-
field versions have been known to show one-step RSB were
studied by MC simulation§37,3§. For example, according
to the calculation of Ref[38] for the 4D three-spin model,
the Binder parameter did not exhibit a crossing of the stan-
dard type, while theG and A parameters showed a clear
crossing aff =T,>0, strongly suggesting the occurrence of
a finite-temperature transition. Thus, from our present study,
the possible occurrence of a one-step RSB transitiom at
=T4>0 is suspected. Meanwhile, closer inspection reveals
that a negative dip observed gnbecomes shallower with
increasing system sizg38], in contrast to the case of the
mean-fieldp=3 Potts glass studied here. Further studies
seem to be required to clarify the nature of the RSB in the
short-rangep-spin glass.

In conclusion, we have investigated by MC simulations

FIG. 8. Finite-size scaling plot of the squared order parameter othe finite-size effects of the two mean-field SG models

the p=3 mean-field Potts glass with the scaling form, B}, with

Tyld=

1.

whose replica-symmetry-breaking properties in the thermo-
dynamic limit are well established. In the mean-field Ising
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spin glasgthe SK model, the Binder parametey of various  sible interpretation of the numerical results for some short-
sizes always remains positive and crosseg=ally, while in  range SG models.

the mean-field three-state Potts glass, it develops a negative

dip which deepens as the system size increases, without a

crossing in theg>0 region as observed in the SK model. ACKNOWLEDGMENTS
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